Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Gene ; 884: 147742, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37634882

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease caused by Schistosoma and affects over 240 million people worldwide. One of the most prominent causative agents is Schistosoma mansoni, which develops inside the intermediate host. Biomphalaria tenagophila is the second most important vector of schistosomiasis in Brazil and the Taim population is completely resistant to infection by S. mansoni. OBJECTIVE: This study aims to identify and characterize B. tenagophila microRNAs (miRNAs) and evaluate their differential expression in S. mansoni-susceptible and -resistant populations of B. tenagophila. METHODS: Two populations of B. tenagophila snails, susceptible and resistant to S. mansoni infection, were used to investigate the small RNA response of these snails after being infected with the parasite. Small RNA sequencing and quantitative real-time PCR were employed to identify and validate differentially expressed miRNAs. Bioinformatics analysis were performed to identify miRNA precursors and mature and evaluate their differential expression. FINDINGS: The study predicted 173 mature miRNAs and 123 precursors. Among them were six Lophotrochozoa-specific miRNAs, three mollusk-specific miRNAs, and six pre-miRNAs in a cluster. The small RNA sequencing and RT-PCR of B. tenagophila samples allowed assessing the expression patterns of miRNAs. MAIN CONCLUSIONS: The results obtained may support future studies in Biomphalaria spp., generating a global impact on disease control.


Assuntos
Biomphalaria , MicroRNAs , Humanos , Animais , Biomphalaria/genética , MicroRNAs/genética , Schistosoma mansoni/genética , Brasil , Biologia Computacional
2.
Mem Inst Oswaldo Cruz ; 115: e190498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32609280

RESUMO

BACKGROUND: Biomphalaria glabrata snails are widely distributed in schistosomiasis endemic areas like America and Caribe, displaying high susceptibility to infection by Schistosoma mansoni. After the availability of B. glabrata genome and transcriptome data, studies focusing on genetic markers and small non-coding RNAs have become more relevant. The small RNAs have been considered important through their ability to finely regulate the gene expression in several organisms, thus controlling the functions like cell growth, metabolism, and susceptibility/resistance to infection. OBJECTIVE: The present study aims on identification and characterisation of the repertoire of small non-coding RNAs in B. glabrata (Bgl-small RNAs). METHODS: By using small RNA sequencing, bioinformatics tools and quantitative reverse transcription polymerase chain reaction (RT-qPCR), we identified, characterised, and validated the presence of small RNAs in B. glabrata. FINDINGS: 89 mature miRNAs were identified and five of them were classified as Mollusk-specific. When compared to model organisms, sequences of B. glabrata miRNAs showed a high degree of conservation. In addition, several target genes were predicted for all the mature miRNAs identified. Furthermore, piRNAs were identified in the genome of B. glabrata for the first time. The B. glabrata piRNAs showed strong conservation of uridine as first nucleotide at 5' end, besides adenine at 10th position. Our results showed that B. glabrata has diverse repertoire of circulating ncRNAs, several which might be involved in mollusk susceptibility to infection, due to their potential roles in the regulation of S. mansoni development. MAIN CONCLUSIONS: Further studies are necessary in order to confirm the role of the Bgl-small RNAs in the parasite/host relationship thus opening new perspectives on interference of small RNAs in the organism development and susceptibility to infection.


Assuntos
Biomphalaria/genética , Biomphalaria/parasitologia , MicroRNAs/genética , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/genética , Esquistossomose mansoni/fisiopatologia , Animais , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Parasita , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Mem Inst Oswaldo Cruz ; 114: e190052, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166481

RESUMO

BACKGROUND: Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE: The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS: The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS: 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS: Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis.


Assuntos
Biomphalaria/genética , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética , Animais , Biomphalaria/enzimologia , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla , Filogenia , Valores de Referência , Transcriptoma , Ubiquitinação
4.
Mem. Inst. Oswaldo Cruz ; 114: e190052, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1012678

RESUMO

BACKGROUND Biomphalaria glabrata is the major species used for the study of schistosomiasis-related parasite-host relationships, and understanding its gene regulation may aid in this endeavor. The ubiquitin-proteasome system (UPS) performs post-translational regulation in order to maintain cellular protein homeostasis and is related to several mechanisms, including immune responses. OBJECTIVE The aims of this work were to identify and characterise the putative genes and proteins involved in UPS using bioinformatic tools and also their expression on different tissues of B. glabrata. METHODS The putative genes and proteins of UPS in B. glabrata were predicted using BLASTp and as queries reference proteins from model organism. We characterised these putative proteins using PFAM and CDD software describing the conserved domains and active sites. The phylogenetic analysis was performed using ClustalX2 and MEGA5.2. Expression evaluation was performed from 12 snail tissues using RPKM. FINDINGS 119 sequences involved in the UPS in B. glabrata were identified, which 86 have been related to the ubiquitination pathway and 33 to proteasome. In addition, the conserved domains found were associated with the ubiquitin family, UQ_con, HECT, U-box and proteasome. The main active sites were lysine and cysteine residues. Lysines are responsible and the starting point for the formation of polyubiquitin chains, while the cysteine residues of the enzymes are responsible for binding to ubiquitin. The phylogenetic analysis showed an organised distribution between the organisms and the clades of the sequences, corresponding to the tree of life of the animals, for all groups of sequences analysed. The ubiquitin sequence was the only one with a high expression profile found in all libraries, inferring its wide range of performance. MAIN CONCLUSIONS Our results show the presence, conservation and expression profile of the UPS in this mollusk, providing a basis and new knowledge for other studies involving this system. Due to the importance of the UPS and B. glabrata, this work may influence the search for new methodologies for the control of schistosomiasis.


Assuntos
Humanos , Ubiquitina/análise , Complexo de Endopeptidases do Proteassoma , Estudo de Associação Genômica Ampla/métodos , Biomphalaria/parasitologia
6.
PLoS One ; 12(7): e0181483, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719649

RESUMO

The World Health Organization (WHO) estimates that approximately 240 million people in 78 countries require treatment for schistosomiasis, an endemic disease caused by trematodes of the genus Schistosoma. In Brazil, Schistosoma mansoni is the only species representative of the genus whose passage through an invertebrate host, snails of the genus Biomphalaria, is obligatory before infecting a mammalian host, including humans. The availability of the genome and transcriptome of B. glabrata makes studying the regulation of gene expression, particularly the regulation of miRNA and piRNA processing pathway genes, possible. This might assist in better understanding the biology of B. glabrata as well as its relationship to the parasite S. mansoni. Some aspects of this interaction are still poorly explored, including the participation of non-coding small RNAs, such as miRNAs and piRNAs, with lengths varying from 18 to 30 nucleotides in mature form, which are potent regulators of gene expression. Using bioinformatics tools and quantitative PCR, we characterized and validated the miRNA and piRNA processing pathway genes in B. glabrata. In silico analyses showed that genes involved in miRNA and piRNA pathways were highly conserved in protein domain distribution, catalytic site residue conservation and phylogenetic analysis. Our study showed differential expression of putative Argonaute, Drosha, Piwi, Exportin-5 and Tudor genes at different snail developmental stages and during infection with S. mansoni, suggesting that the machinery is required for miRNA and piRNA processing in B. glabrata at all stages. These data suggested that the silencing pathway mediated by miRNAs and piRNAs can interfere in snail biology throughout the life cycle of the snail, thereby influencing the B. glabrata/S. mansoni interaction. Further studies are needed to confirm the participation of the small RNA processing pathway proteins in the parasite/host relationship, mainly the effective participation of small RNAs in regulating their target genes.


Assuntos
Biomphalaria/genética , MicroRNAs/genética , Schistosoma mansoni/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Filogenia
7.
PLoS One ; 12(6): e0178829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28622369

RESUMO

Once inside a vertebrate host after infection, individual schistosomula of the parasite Schistosoma mansoni find a new and complex environment, which requires quick adjustments for survival, such as those that allow it to avoid the innate immune response of the host. Thus, it is very important for the parasite to remain within the skin after entering the host for a period of about 3 days, at which time it can then reach the venous system, migrate to the lungs and, by the end of eighth day post-infection, it reach the portal venous system, while undergoing minimal changes in morphology. However, after just a few days in the portal blood system, the parasite experiences an extraordinary increase in biomass and significant morphological alterations. Therefore, determining the constituents of the portal venous system that may trigger these changes that causes the parasite to consolidate its development inside the vertebrate host, thus causing the disease schistosomiasis, is essential. The present work simulated the conditions found in the portal venous system of the vertebrate host by exposing schistosomula of S. mansoni to in vitro culture in the presence of portal serum of the hamster, Mesocricetus auratus. Two different incubation periods were evaluated, one of 3 hours and one of 12 hours. These time periods were used to mimic the early contact of the parasite with portal serum during the course of natural infection. As a control, parasites were incubated in presence of hamster peripheral serum, in order to compare gene expression signatures between the two conditions. The mRNA obtained from parasites cultured under both conditions were submitted to a whole transcriptome library preparation and sequenced with a next generation platform. On average, nearly 15 million reads were produced per sample and, for the purpose of gene expression quantification, only reads mapped to one location of the transcriptome were considered. After statistical analysis, we found 103 genes differentially expressed by schistosomula cultured for 3 hours and 12 hours in the presence of hamster portal serum. After the subtraction of a second list of genes, also differentially expressed between schistosomula cultured for 3 hours and 12 hours in presence of peripheral serum, a set of 58 genes was finally established. This pattern was further validated for a subset of 17 genes, by measuring gene expression through quantitative real time polymerase chain reaction (qPCR). Processes that were activated by the portal serum stimulus include response to stress, membrane transport, protein synthesis and folding/degradation, signaling, cytoskeleton arrangement, cell adhesion and nucleotide synthesis. Additionally, a smaller number of genes down-regulated under the same condition act on cholinergic signaling, inorganic cation and organic anion membrane transport, cell adhesion and cytoskeleton arrangement. Considering the role of these genes in triggering processes that allow the parasite to quickly adapt, escape the immune response of the host and start maturation into an adult worm after contact with the portal serum, this work may point to unexplored molecular targets for drug discovery and vaccine development against schistosomiasis.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , RNA de Helmintos , RNA Mensageiro , Schistosoma mansoni , Análise de Sequência de RNA/métodos , Soro/química , Transcriptoma/efeitos dos fármacos , Animais , Cricetinae , Mesocricetus , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo
8.
Nat Commun ; 8: 15451, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508897

RESUMO

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.


Assuntos
Biomphalaria/genética , Biomphalaria/parasitologia , Genoma , Esquistossomose mansoni/transmissão , Comunicação Animal , Animais , Biomphalaria/imunologia , Elementos de DNA Transponíveis , Evolução Molecular , Água Doce , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Feromônios , Proteoma , Schistosoma mansoni , Análise de Sequência de DNA , Estresse Fisiológico
9.
Parasitology ; 142(9): 1143-51, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26028506

RESUMO

Skin schistosomula can be prepared by collecting them after isolated mouse skin have been penetrated by cercariae in vitro. The schistosomula can also migrate out of isolated mouse skin penetrated by cercariae in vitro and from mouse skin penetrated by cercariae in vivo. Schistosomula can also be produced from cercariae applied through a syringe or in a vortex. When certain surface properties of the different forms of schistosomula were compared, those migrating from mouse skin penetrated by cercariae in vivo or in vitro had greatly increased permeability to membrane impermeant molecules such as Lucifer yellow and high molecular weight dextrans. These migrating forms also possessed surfaces which showed greatly enhanced uptake into internal membrane vesicles of the dye FM 143, a marker for endocytosis. This greatly enhanced activity and permeability of the surfaces of tissue migrating schistosomula is likely to be of great importance in the adaptation to the new host.


Assuntos
Schistosoma mansoni/fisiologia , Esquistossomose mansoni/parasitologia , Animais , Corantes Fluorescentes , Isoquinolinas/química , Camundongos , Movimento , Permeabilidade , Esquistossomose mansoni/patologia , Pele/parasitologia , Pele/patologia
10.
Toxicon ; 51(3): 428-34, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18068746

RESUMO

Phoneutria spider venoms are a rich source of bioactive components. The limited amounts of crude material available, however, can be considered as a major hindrance for a faster development in the field. In the present study, we attempted to establish primary cultures of venom glands of Phoneutria nigriventer as an alternative, in vitro source of venom. Three different developmental stages were tried as starting materials: whole embryo (inside the cocoon), nymph (early after cocoon hatching) and young adult (1 year after cocoon hatching). The embryonic cells remained in suspension in the primary cultures, with no signs of adhesion or differentiation, for about 6 months. Nevertheless, this culture was useful for the first chromosome C-banding of Phoneutria. An average of 29+/-1 acrocentric chromosomes were found. Striated muscle cells were the only kind of cells in the culture of venom glands from Phoneutria nymphs. The most promising results were achieved with 1-year-old specimens. Besides muscle, adherent epithelial cells were also obtained in culture. Although these cells remained in culture for a short time (up to 48 h) immunochemical analysis of the culture supernatant evidenced the presence of Phoneutria venom components. This can be considered as a first step toward the functional cultures of venom glands of Phoneutria spiders.


Assuntos
Técnicas de Cultura de Células , Venenos de Aranha/metabolismo , Aranhas/citologia , Aranhas/fisiologia , Envelhecimento , Animais , Cromossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...